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Abstract. This article handles the problem of validating the results
of nested (as opposed to ”flat”) clusterings. It shows that standard ex-
ternal validation indices used for partitioning clustering validation, like
Rand statistics, Hubert Γ statistic or F-measure are not applicable in
nested clustering cases. Additionally to the work, where F-measure was
adopted to hierarchical classification as hF-measure, here some methods
to get desired hRand and hΓ indices for nested clustering are presented.
Introduced measures are evaluated and, as an exemplary application,
a validation of nested clustering methods for Wikipedia articles using
OPTICS algorithm is shown.
Clustering validation, Rand index, Hubert’s index, F-measure, OPTICS,
reachability plot.

1 Introduction

One of the fundamental data mining tasks is clustering [1]. The goal of a clus-
tering algorithm is to find similar objects in a dataset and group them into
clusters. Such an algorithm tries to minimize intra-cluster distance while maxi-
mizing inter-cluster distance. In the context of text documents, such clustering
is very important, because finding interesting information within still growing
large text repositories is a rather difficult task, if the repository is not properly
organized. Clustered (categorized) collection of texts is much easy to work with.
It would be especially appreciate, if clusters that still contain many articles are
also organized in sub-clusters, so that the whole repository has a structure of
a folder-tree. This kind of organizing data into a tree of nested clusters can
be achieved using some methods of hierarchical clustering [2], which produce
dendrograms1 and then pruning them, or other algorithms that create folder-
like nested trees directly. We group all those methods under the general nested
clustering label.

Having got a partition (in our case it is a hierarchical partition) of data
elements into clusters, we must be sure that this organization of objects is

1 A dendrogram is a special kind of cluster tree with all N objects of a dataset as N
singleton leaf clusters and N − 1 non-leaf clusters, which are unions of two clusters
from lower levels.



valid, which means that it really groups similar and separates dissimilar ob-
jects. Particularly, the organization of a text repository is valid, when clusters
(i.e. categories of articles) contain texts with the same or correlated subjects.
This validation step is fundamental for achieving reliable clustering results and
has become a topic of separate research examination. There are three main ap-
proaches to cluster validation. They are based on internal, relative and external
criteria [3],[4],[5].

Internal validation techniques employ the fact that clusters are sets of ob-
jects that are compact and well separated. They measure compactness – dis-
tances between objects in the same clusters (if they are smaller, clusters are
more compact) and separation – distances between clusters (bigger distances in-
dicates better separation). This idea can be applied in many ways, thus different
internal validation indices have been proposed. The classic paper [6] presents the
examination of 30 internal validation indices. More recent papers [3],[4],[7],[8],[9]
continue to find best indices among already known and new ones. Unfortunately,
the conclusion often repeated from these studies is that there is no best internal
validation index, because they are all data dependent.

Relative approach to cluster validation relies on repeating the same clustering
algorithm multiple times using different parameters, and choosing the most sta-
ble results. For example, if the number of clusters is one of the input parameters,
one tries clusterings using various number of clusters and chooses that for which
internal indices are best. If the number of clusters is not the parameter, relative
validation allows one to choose the parameter values that are in the middle of
the broadest range for which the number of clusters is constant [4].

External validation may be used when the real partition of the clustered data
is known a priori. Knowing the classes (or categories) of the data objects, we
can compare them with the clusters created by an algorithm. It is known [3],
that external validation is more accurate than internal or relative. This is the
type of validation especially important, when one tries to find the best clustering
method for a specific task and usually uses a variety of algorithms on a certain
dataset with good known class structure.

This article is devoted to external validation measures for nested clustering
and is organized as follows. Section 2 describes popular external validation in-
dices for non-nested ’flat’ clustering. Then, section 3 introduces modified versions
of these indices, so they can properly evaluate nested clustering quality. That
section also discusses what properties such measures should have. Some of the
measures presented there comes from the literature, some are invented by us. In
section 4 we present an evaluation of these measures based on experiments on
artificial data sets. The best measures are then presented in a practical context
in section 5, in which we are comparing different cluster extraction methods from
reachability plots for automatic Wikipedia articles nested clustering. Section 6
concludes the presented material.



2 External Validation Indices for ”Flat” Clustering

In this section we present three popular external validation measures, namely
F-measure, Rand statistic and Hubert Γ statistic, in their normal form adequate
only for non-nested ”flat” clustering tasks. In the next section, we show their
modified versions suited to cluster hierarchies. The first one index – F-measure

– is a well known tool in the information retrieval domain, but it is also used
as a measure of partitioning quality, where it is known to be better than such
factors as purity, coverage or entropy [10]. Rand statistic and Hubert Γ statistic,
originally introduced in the classical papers [11, 12], are recommended in [3] [13],
where the authors show that the validation using these factors is more accurate
than those with Jaccard coefficient or Fowlkes and Mallows index.

For external validation we must assume that, for a given set of objects X, we
have both: the real, true partition of this set CT = {CT

1 , . . . , C
T
KT } (we can call

CT
k sets as classes, KT is the number of classes) and clustering partition, the

result of clustering or classification algorithm, CC = {CC
1 , . . . , CC

KC} (CC
k sets

are clusters, KC is the number of clusters). Having these two partitions we can
compute how similar they are.

2.1 F-measure

F-measure is a mixture of two indices: precision (P ), which measures the homo-
geneity of clusters with respect to a priori known classes, and recall (R), that
evaluates the completeness of clusters relatively to classes. Having the previously
introduced notation, precision of cluster CC

k with regard to class CT
l is computed

as follows:

P
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Recall of cluster CC
k with respect to class CT

l is defined as:
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Then, F value of the cluster CC
k with respect to class CT

l is, in general, the
combination of these two:
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, β ∈ [0,+∞) , (3)

but most often researchers treat precision and recall with the same weights
putting β = 1 and then F value is the harmonic mean of the precision and the
recall :
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The F-measure for cluster CC
k is the highest of F values obtained by comparing

this cluster with each of known classes:

F
(

CC
k

)

= max
CT

l
∈CT

F
(
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l

)

. (5)

Finally, the F-measure of the whole clustering is a weighted sum of individual
F-measures of all clusters:

F
(
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)

=
∑

CC

k
∈CC

#CC
k

N
F
(

CC
k

)

. (6)

where N is the number of all objects in the dataset.

2.2 Measures Based on Similarity Matrices

For both partitions, CT and CC , we can calculate a binary N × N similarity

matrix S:

S =
[

si,j
]

, si,j =

{

1 if xi and xj are in the same class/cluster,

0 otherwise.
(7)

Hubert Γ statistic. Hubert Γ statistic measures the correlation of the par-
titions CT and CC based on the correlation between their respective similarity
matrices ST and SC :

Γ =
1

M

N−1
∑

i=1

N
∑

j=i+1

sTi,j · s
C
i,j , (8)

where M = n(n − 1)/2 is the total number of pairs of different data objects
in the dataset. However, it is better to use the normalized version of Hubert Γ
statistic, which is a Pearson product-moment correlation coefficient (PMCC):

Γ ∗ = PMCC(ST ,SC) =
1

(M − 1)σTσC

N−1
∑

i=1

N
∑

j=i+1

(

sTi,j − µT
) (

sCi,j − µC
)

, (9)

where µT , µC , σT and σC are the respective sample means and standard devia-
tions of the values in ST and SC .

Rand statistic. Rand statistic employs the fact that for each pair of data
objects x1 and x2 (x1 6= x2) from the data set, we have one of four possible
situations:

(a) x1 and x2 are in the same class/cluster in both CT and CC ,



(b) x1 and x2 are from the same class (in CT ) but have been clustered to different
clusters in CC ,

(c) x1 and x2 are from different classes (in CT ) but have fallen to the same
cluster in CC ,

(d) x1 and x2 are in different classes/clusters in both CT and CC .

The number of situations (a), (b), (c) and (d) indicates factor values a, b,
c and d respectively. More similar CT and CC are, bigger are a and d factors.
This observation leads to the definition of Rand statistic calculated as follows:

Rand =
a+ d

M
, (10)

where M denotes the same as in previous equations (8) and (9).
It may be noted, that a and d factors can be easily calculated from similarity

matrices ST and SC :

a = #
(

sTi,j = 1 ∧ sCi,j = 1
)

i∈[1,N ],j>i
, (11)

d = #
(

sTi,j = 0 ∧ sCi,j = 0
)

i∈[1,N ],j>i
. (12)

Therefore, the nominator in the equation 10 can be expressed in terms of the
similarity matrices and Rand index can be calculated as:

Rand =

∑N−1
i=1

∑N

j=i+1

(

1− |sTi,j − sCi,j |
)

M
= 1−

∑N−1
i=1

∑N

j=i+1 |s
T
i,j − sCi,j |

M
.

(13)
Rand statistic and F-measure take values between 0 and 1, Hubert Γ ∗ statis-

tic – between -1 and 1. For all three measures, higher value indicates better
clustering with value 1 for perfect adequacy between known classes and clusters
created by an algorithm.

3 External Validation Indices for Nested Clustering

3.1 Requirements of Nested/Hierarchical Validation Measure

For nested clustering, an external validation index should have the ability to
discriminate small misclassifications, i.e. a situation when an object is put into
a wrong class which is however not far in the hierarchy from the right one, from
bigger misclassifications. Kiritchenko et al. [14] have formulated three require-
ments that a hierarchical evaluation measure should satisfy:

1. The measure M gives credit to partially correct classification, e.g. mis-
classification into node 4 when the correct node is 6 (figure 1) should be
penalized less than misclassification into node 2. We can write this as:
M(C6→4) > M(C6→2).

2. The measure punishes distant errors more heavily: e.g.M(C6→1) < M(C6→3)
and M(C6→4) < M(C6→1).



Fig. 1: An exemplary class/cluster hierarchy.

3. The measure gives more penalty points to misclassifications at higher levels
of hierarchy (closer to the root) than that at lower levels, e.g. M(C1→2) <
M(C3→4) < M(C6→7).

Although these requirements concern validation of hierarchical classification
task, they should also be satisfied by external validation measures of hierarchi-
cal clustering. But in this second case, because of the fact that nested clusters
returned by an algorithm can be of different number and hierarchical structure
than the true classes are, we should formulate additional requirements:

4. If a class is split into some number of clusters, then the punishment for that
is smaller when the number of superfluous clusters are small and they are
closely connected in the hierarchy.

5. Analogously, if some number of classes are joined into one cluster, the score
of the matching should be dependent on the relations between joined classes
in the true class hierarchy.

3.2 hF-measure

To meet the requirements they listed (req. 1-3), Kiritchenko et al. [14] have
adopted F-measure to nested classification by calculating precision and recall

(formulas (1) and (2)) with respect to the rule that objects are in a given
class/cluster if they are exactly in that class/cluster or in some of ancestors,
except the root (because, in this way, every object belongs to the root).

These enhanced precision and recall values can be efficiently computed using
classification arrays [15, 16]. A classification array have the form of a binary
matrix A, where each row corresponds to a data object, each column represents
a different cluster (the size of the matrix is N×K) and element ai,j takes 1 when
there is an assignment of object i to cluster j, and 0 otherwise. A fragment of
the classification array for the graph in figure 2 is presented in table 1.

Having the true classification array AT and returned from clustering AC ,
formulas for precision and recall can be expressed as:

P
(
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k , CT

l

)
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aC·,k · aT·,l
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i=1 a
C
i,k

, (14) R
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l

)
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aC·,k · aT·,l
∑N

k=i a
T
i,l

. (15)



3.3 Cophenetic and Cladistic Coefficients

The two classic measures that can be used for external validation of nested
clustering are cophenetic and cladistic coefficients [15, 16]. Originally, they were
invented to measure the quality of dendrograms from full hierarchical clusterings,
but they also can be applied to folder-like tree structures when adopted in a way
presented below. They evaluate the correlation between dissimilarity matrices

DT and DC , whose elements di,j indicate a kind of distance between positions
of objects i and j in the true tree of classes (in the case of DT ) and between
their positions in the tree of clusters returned from a nested clustering (DC).

Cophenetic distance between objects in a general class/cluster tree (not only
dendrograms) can be formulated as the height of a subtree which joins those
objects:

dcoph(i, j) = max (lev (i,NCC) , lev (j,NCC)) , (16)

where NCC is the abbreviation of the Nearest Common Cluster and lev function
denotes the level-based distance between clusters in which objects i and j are.

Fig. 2: An exemplary nested cluster-
ing with not correctly assigned ob-
jects a1 - a4 which came from the
same class.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

a1 1 1 1 0 0 0 0 0 0 0 0

a2 1 0 0 0 0 1 0 0 0 0 0

a3 1 0 0 0 0 1 1 0 0 0 0

a4 0 0 0 0 0 0 0 0 1 1 0

Table 1: Classification array (AC)
for the example given in figure 2.

For example, in figure 2 objects a1 and a2 are joined together in cluster C1,
and the subtree containing nodes C1, C2, C3 and C6 is of height 2, so the cophe-
netic distance between objects a1 and a2 is 2. Similarly we have dcoph(a1, a3) = 2
and dcoph(a1, a4) = 3.

Cladistic distance between two objects in a class/cluster tree is the number
of line segments that separate clusters which those objects are:

dclad(i, j) = lev (i,NCC) + lev (j,NCC) . (17)

Using the example from figure 2, dclad(a1, a2) = 3, dclad(a1, a3) = 4 and
dclad(a1, a4) = 5.

The external validation measures of nested clusterings are then product mo-
ment correlation coefficients, Coph or Clad, between dissimilarity matrices DT

and DC :

Coph = PMCC(DT
coph,D

C
coph) , (18) Clad = PMCC(DT

clad,D
C
clad) . (19)



3.4 Measures Based on Non-binary Similarity Matrices

In subsection 2.2 we present a similarity matrix S (eq. (7)) which takes only
binary values. But if a validation of non-perfect nested clustering should be
able to distinguish small misassignments from the bigger ones, then we need to
operate with a non-binary similarity matrix S∗ .

There can be many ways of defining such a matrix. First, we can derive it
from cophenetic or cladistic dissimilarity matrix (eq. (16) and (17)), using the
following formulas:

s∗coph(i, j) = 1−
dcoph(i, j)

treeHeight
, (20) s∗clad(i, j) = 1−

dclad(i, j)

2 · treeHeight
, (21)

where treeHeight is the height (in levels) of the whole nested class/cluster struc-
ture. Resulting similarity matrix takes values between [0, 1] with 1 for objects
from the same class/cluster and values smaller than 1 for objects from different
clusters – proportionally to the distance between these clusters in the tree.

We provide another way of calculation a non-binary similarity matrix for
nested clustering, using formula:

s∗ca(i, j) =
lev(NCC,Root)

mean (lev(i,Root), lev(j,Root))
, (22)

We named this method CA, because it is the ratio between the number of
common clusters of two objects to the number of all the clusters into which
objects fell (because they can be in different number of clusters, the arithmetic
mean is taken). If s∗ca(i, j) is undefined (when both i and j objects are not
clustered and they belong only to the root), then we propose to put s∗ca(i, j) = 0.

For our example presented in figure 2, the similarity between objects a1 and
a2, assigned to clusters C3 and C6 respectively, is calculated according to their
nearest common cluster (C1). The level distance between NCC and the root is
lev(C1,Root) = 1, the distances from C3 and C6 to the root are lev(C3,Root) =
3, lev(C6,Root) = 2. Using formula (22), s∗ca(a1, a2) = 1

(mean(2,3)) = 0.4. By

contrast, s∗ca(a1, a3) =
1
3 , and for objects a1 and a4, the nearest common cluster

is the root, so s∗(a1, a4) = 0.
CA similarity matrix can be effectively calculated using classification arrays.

We can rewrite expression (22) as (23):

s∗ca(i, j) =
2

2
·

lev(NCC,Root)
lev(i,Root)+lev(j,Root)

2

= 2 ·
ai,· · aj,·

∑K

k=1 ai,k +
∑K

k=1 aj,k
. (23)

A hierarchical version of Rand validation index can be then easily obtained
by putting into expression (13) the augmented non-binary similarity matrices
S∗T and S∗C instead of traditional binary ones. We can name this hierarchical
version of Rand index as hRand analogously to hF-measure proposition by Kir-
itchenko et al. Because similarity matrices employed in hRand calculation can
be of three types (eq. (20), (21) and (23)), in fact we have not one, but three
hRand validation indices: hRandcoph, hRandclad, hRandca.



In the same way, we have three types of PMCC-based hierarchical normal-
ized Hubert’s hΓ ∗

coph, hΓ
∗
clad, hΓ

∗
ca coefficients by replacing traditional binary

similarity matrices in formula (9) with one of the three non-binary ones. How-
ever, because PMCC measures the linear dependence between variables, it has
the same value for similarity or dissimilarity matrices – the transformations
from dissimilarity to similarity matrix (eq. (20) and (21)) are linear. Therefore,
hΓ ∗

coph, calculated from similarity matrices, and Coph coefficient, obtained from
dissimilarity matrices, are the same. Analogously hΓ ∗

clad = Clad.
All the measures discussed in the previous and this section are presented in

table 2.

Table 2: External validation indices for ’flat’ and nested clustering.
(dis-)similarity matrix based

Rand(ST , SC) PMCC(ST , SC)
’flat’ clustering F-measure Rand Hubert’s Γ ∗

nested clustering hF-measure
hRandcoph Γ ∗

coph = Coph
hRandclad Γ ∗

clad = Clad
hRandca Γ ∗

ca

4 Evaluation of the Measures Using Synthetic Data

In this section we present experiments which were performed to see how the
introduced external validation indices for nested clustering work: whether they
satisfy the conditions of a hierarchical measure (see subsection 3.1) and, if so,
how they are sensitive to classification errors at different levels of a hierarchy.

4.1 The Same Class and Cluster Trees

First experiments were done to see whether the indices fulfil 3 basic properties
of a hierarchical classification measure. We prepared an exemplary true nested
classification CT , presented in figure 3. A binary tree of level 3 was chosen,
because many cases of misclassification can be shown on such a generic structure.
Every node of that tree is a class that has 5 objects directly associated with it
(non-leaf classes has also objects indirectly associated with them through child
classes).

Then, a series of non-perfect classification trees CC was artificially prepared,
by taking all 5 objects from class 15 and assigning them to one of the other classes
X (X ∈ 1, 2, . . . , 14). Such a classification is denoted by C15→X . It was done to
simulate different misclassification cases – from not very huge, like C15→14, to
rather significant, for example C15→2. All indices were computed to measure the
similarity between CT and C15→X .

If a measure M fulfils the Kiritchenko et al. requirements, then the following
inequalities should be true:



Fig. 3: The structure of CT . Numbers inside circles describe labels of classes.
Numbers in parenthesis indicated the expected ranking of nodes wrt. the impor-
tance of misclassification from C15: less value, less crucial misclassification.

1. M(C15→{9−14}) > M(C15→{2−8})
2. M(C15→13) > M(C15→9) > M(C15→1)

M(C15→13) > M(C15→14)
M(C15→9) > M(C15→{10−12})
M(C15→1) > M(C15→{2−8})

3. M(C15→14) > M(C13→10) > M(C9→2)

Conditions 1 and 2 mean that the validation measure should decrease follow-
ing the order presented by numbers in parenthesis in figure 3.
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Fig. 4: (a) The values of similarity matrix between object from class 15 and
objects from other classes. (b) The values of similarity matrix between objects
from indicated classes.

We have first checked, if similarity matrix elements have expected values.
Figure 4a shows that similarity matrix based on cophenetic values and on CA

method are non-increasing, which is desirable when ordered as presented. How-
ever cophenetic-type line is more stair-like – this kind of similarity equalize
C15→13 with C15→4 and C15→9 with C15→10,11,12. CA-similarity do not have
this drawback. Cladistic-type similarity equals C15→1 with C15→10, which is not
correct, because the second classification has a partially true assignment. What
is even worse is that it penalizes C15→1 less than C15→11 or C15→12. An advan-
tage of this type of similarity matrix is that it distinguishes between bad and



even worse misclassifications, when the other two give 0 for all binds to wrong
main branch of the class tree.

Figure 4b depicts that only CA-type similarity matrix fulfils the third re-
quirement of hierarchical measure, that a penalty for misclassification depends
on the level of a hierarchy at which this mistake was done2.
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Fig. 5: hRand (a) and PMCC (b) indices for non-perfect clusterings C15→X .

The charts in figure 5 show how similarity-based indices perform depending
on the type of similarity matrices. For CA-based indices, especially PMCCCA,
graphs are almost always decreasing, which means that they correctly evaluate
the significance of misclassification for partially correct cases (into classes 9 to
14). Cophenet and cladistic-based indices tend to give higher scores when objects
are deeply classified, which violates the second Kiritchenko et al. requirement.
All measures punish severely far misclassifications (into other main branch of
a hierarchy), but not distinguish between them correctly. PMCC more dynam-
ically changes values than hRand (because it’s range is two times greater than
the range of hRand). Figure 6 illustrates that despite the fact that cophenetic

and cladistic similarities do not distinguish levels of mistakes, the hRand and
PMCC indices based on them are able to do that. This is due to the fact that
the relationships between all the objects are taken into account when an index
is calculated, and this results in slightly smaller indices values for more signifi-
cant misclassifications. However, CA-based indices more markedly express these
differences.

Figure 7 shows how the hF-measure performs. What is not desired here
is that the misclassifications C15→1 and C15→2 have smaller punishment than

2 It must be emphasised that original cophenetic coefficient for dendrograms is able
to distinguish the level of a misclassification [15]. Results presented here stem from
our usage of cophenetic distance to folder-like nested clusters as a level of a subtree
that join two clusters (eq. (16)).
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Fig. 6: Third requirement test results.

15 13 14 9 10 11 12 1 2 3 6 4 5 7 8
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
hF−measure

Class

In
de

x 
va

lu
e

Fig. 7: hF-measure performance.

C15→11,12. For hF-measure it is better to misclassify into totally wrong branch
of the tree but not far from the root class, than to misclassify into class far away
from the root even if it is in the correct main branch. This is because mistaken
objects reduce the precision not only of the class to which it directly belongs,
but also of all ancestor classes. Also, hF-measure do not discriminate between
correct classification and the situation when a whole class is classified into it’s
parent – that is why F (C15→13) = 1.

4.2 Split and Joined Classes

The aim of the second group of experiments was to check whether presented
measures satisfy two additional requirements for external validation of nested
clusterings, that is how it should evaluate clusterings with not exactly the same
overall hierarchy of clusters as the hierarchy of classes. This often happens,
especially in situations when objects of the same class are split into a number of
clusters or objects from different classes are joined into only one cluster.

(a) (b) (c) (d) (e) (f)

Fig. 8: The class tree (a) and 5 cluster trees (b-f) of different non-perfect clus-
terings ordered in increasing misclustering error significance.



Tests were made using 24 objects of 2 classes, 12 objects per class (fig. 8a) and
then creating 5 types of wrong clusterings (fig. 8b-8f). Each of them mistakenly
splits objects of class 1 equally into two or three clusters. Depending on the
position of the new clusters in a clustering tree, measures should give bigger or
smaller matching score. Intuitively, the score should be decreasing for clusterings
ordered as presented in figure 8.

Using the same data, we have also checked how measures works when two
or three classes are joined into one cluster. Clusterings (fig. 8b-8f) were treated
as true class hierarchies and a tree 8a served as a partially incorrect clustering.
Actually, for validation measures based on similarity matrices it is indifferent
which of the assignments is the reference and which is the one under evaluation.
Therefore, only the hF-measure reacts differently in situations with joining and
splitting errors.
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Fig. 9: hRand, PMCC and hF-measure for splitting and joining classes errors for
structures from fig. 8.

Figure 9 shows the results. We can see that both hRand and PMCC validation
indices work correctly only with CA-type of similarity matrices. Cophenetic and
Cladistic-based measures underrate 8b situation. In addition, hRandclad per-
forms especially improperly. The hF-measure judges as expected only splitting
kind of errors. First three of joining misclusterings are not found by hF-measure,
because of the property, mentioned earlier, that it does not recognize situations
when a whole class is classified into it’s parent.

5 Experiments with Text Documents Clustering

In this section, we present our usage of hRandca, hΓ
∗
ca and hF-measure – the

most promising of discussed validation measure – in a practical field, which is
text documents clustering.



5.1 Data Characteristics

We research methods for effective categorizing of textual content. The goal is
to organize text documents sets into meaningful category trees. To evaluate our
approach we find Wikipedia a very useful source of data. It provides articles that
are to be organized, as well as offering categories that can be used as reference
classes to perform external validation.

We obtained from Polish Wikipedia articles that fell into selected categories,
and using them formed 12 datasets that are described in table 3. We selected
three types of datasets ordered by ascending categorization complexity:

– A - datasets that contain 4 categories not related to each other,
– B - datasets containing parent category and 3 subcategories,
– C - datasets containing hierarchy of 4 categories.

Articles were represented using standard Vector Space Model (VSM) with
TF/IDF (Term Frequency / Inverse Document Frequency) [17] term weighting
method and cosine metric [1]. We cannot expect that the results of clustering
algorithms on such pure representations of articles will be exactly the same
as Wikipedia categories without the indication of the most important features.
Therefore we performed a supervised feature selection based on Fisher Linear
Discriminant Analysis (FLDA) [18]. Because of high data dimensionality, we
also performed Principal Component Analysis (PCA) [19] to identify the most
significant features in the data.

Table 3: Wikipedia categories used in experiments.
category structure 1 2 3 4

A

Physics Geography Chemistry Astronomy
Arts Musicology Archival science Demography
Political science Journalism Psychology Theology
Computer science Biotechnology Optics Energetics

B

Physics Musicology Psychology Energetics
Atomic physics Musical forms Psychological theories Alternative sources
Tools of physics Theories of music Psychometrics Heating techniques
Astrophysics Musical instruments Defence mechanism Oil and gas companies

C

Physics Musicology Psychology Energetics
Astrophysics Musical forms Psychological theories Heating techniques
Physics of stars Dance forms Communication Heat engines
Giants Ballet Conflict Fuel to heat engines

5.2 Clustering Algorithm

The nested clusters have been obtained using OPTICS algorithm [20]. This is
a well-known clustering algorithm that analyses local object densities and present
them on the so-called reachability plot (fig. 10a). In the reachability plot ”valley”
regions indicate natural clusters found in the dataset; the deeper they are, the
more dense are the clusters they designate. The height of the bar (or bars)



between valleys show how clusters are separated from each other. Subclusters of
a parent cluster are indicated by deeper and narrower valleys (or ”dents”) found
in the bottom of the ”parent” valley. Nested clustering of a dataset can be then
obtained from the reachability plot by finding and analysing it’s valleys.

(a) A reachability plot

(b) ζ-clustering

(c) gradient-clustering

(d) tree-clustering

Fig. 10: An exemplary real data reacha-
bility plot and structures of nested clus-
ters extracted using different methods.

There are a few methods of ex-
tracting clusters from reachability
plot. The most well-known are:

ζ-clustering [20] recognizes clus-
ters on the basis of down and up steep
areas which slope is defined by a pa-
rameter ζ. A cluster starts in a steep
down area and ends in a steep up
area in such positions that the start
and end points have approximately
the same reachability value. A similar
idea is used in the gradient-clustering
[21]. Here, the algorithm finds inflex-

ion points, i.e. points where the gradi-
ent (the difference between reachabil-
ity values of adjacent points) changes
significantly. This significance is set
by a parameter t. The results given
by these two methods usually form
complex structures with many levels
of subclusters (fig. 10b and 10c) and,
in most real data cases, are highly sen-
sitive to their parameters.

Tree-clustering [22] finds the most significant local maxima in the reachability
plot. It sorts them decreasingly and treats as split points that divide higher level
clusters into smaller ones. This method is relatively insensitive to it’s parameter
significance, but it has been shown [21], that some nested clusters cannot be
found using local maxima identification (fig. 10d).

SCI – Simple Cluster Identification algorithm [23], created to achieve best
purity of clusters regardless of the coverage (the percentage of objects that are
clustered to any cluster), works based on a simplification that the cluster is
a maximal sequence of points which have comparable reachability values. This
method returns only ”flat” clusters. The nested clusters are not obtained here
directly, but by repeating this procedure within each of the clusters separately.

5.3 Experiments and Results

In our experiments we compare the application of methods presented in sub-
section 5.2 to find the best one for extracting the clusters of Wikipedia arti-
cles compared to human-made categories. We also test the sensitivity to input
parameters of these methods (i.e. stability of results while changing ζ, t and
significance).



(a) (b) (c)

Fig. 11: The averaged results of external clustering validation indices for test
datasets (hRandca, hΓ

∗
ca and hF-measure) for ζ- (a), gradient- (b) and tree- (c)

clustering algorithms.

Figure 11 shows that the tree-clustering method returns more stable results
than the other 2 techniques. This method gives also less complex clustering struc-
tures (this can be shown in the figure 10d) and exhibits the best performance for
type A datasets (which are datasets without subclasses). However, the other 2
ones, when their parameters are properly set, work better for B and C datasets,
i.e. in more complicated, nested cases.

Figure 12 shows the averaged results of nested clusters extraction for each of
the methods with optimal settings. We also provide the results for mixing the
datasets together (for example datasets B1 and B2 together, or datasets A3, B3
and C3 together etc.) to test how OPTICS works with bigger datasets with more
complex trees of categories.

Fig. 12: Clusters extraction algo-
rithms performance.

Fig. 13: 3 external validation indices
for results of tree-clustering.

It is obvious the clustering of datasets of type B and C are much less accu-
rate than that of type A, because the structure is more complicated. What is
surprising is that the clustering of more complex datasets, namely B+B, A+B,
A+B+C and C+C, provide better results than those of only B or C. It is because
of the fact the cluster extraction algorithms use only relative knowledge about



the distances between clusters in the feature space. For datasets of type B or C,
where all articles are from the same parent category, they should be placed in the
same cluster and then divided into subclusters. However, clustering algorithms
always try to find the most distinguishable groups of objects in the dataset and
place them into different clusters. In the case when all objects are from the
same category, algorithms must split this category into different clusters causing
lower values of the external validation indices. When a dataset contains articles
from other categories (like B+B examples), then the main classes are correctly
clustered and this results in significantly higher values of the overall external
validation indices.

In figure 13 we show the comparison of the evaluation of the tree-clustering
algorithm using hRandca, hΓ

∗
ca and hF −measure. It can be seen that in this

case, they all measure the same tendencies: results with little differences in dy-
namics, range of the returning values with hΓ ∗

ca as most dynamically changing.
The impact of advantages and disadvantages of these indices, discussed in the
previous section, is not clearly seen here.

6 Conclusions and Future Work

The main contribution of this paper is an examination of existing and a devel-
opment of some new external validation methods applied to nested clustering.
This validation step is crucial in researching good tools for content oriented
organization of text documents.

We added two requirements to those of Kiritchenko et al., which should be
fulfilled by a satisfactory nested clustering measure. Then, we proposed such
measures: we adopted Rand and Hubert’s Γ ∗ indices by calculating them on
non-binary similarity matrices. We proposed how to get such non-binary CA-
type similarity matrices. After evaluation of proposed measures, we employed the
most promising of them to judge clusterings of Wikipedia articles with different
variants of OPTICS algorithm.

Measure evaluation part shows that hRandca, hΓ
∗
ca and hF-measure are the

most promising indices of nested clustering quality wrt. external reference. Re-
sults presented in the practical part demonstrates that OPTICS can be used for
text documents clustering. Depending on whether we want more complex, or
simpler, cluster trees, gradient-, ζ- or tree-clustering extraction algorithm can
be employed.

Having established validation measures, our future work will be focused on
the development of text representations that will be able to capture semantics
of the text. Some promising ideas for this goal is the use of semantic correlations
between words obtained from an external lexical knowledge like Wordnet [24]
or/and, in the case of on-line articles, the exploitation of the information carried
by links between articles.
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